這將刪除頁面 "The Verge Stated It's Technologically Impressive"
。請三思而後行。
Announced in 2016, Gym is an open-source Python library created to help with the development of support knowing algorithms. It aimed to standardize how environments are defined in AI research, making published research more easily reproducible [24] [144] while offering users with a simple interface for interacting with these environments. In 2022, brand-new advancements of Gym have been relocated to the library Gymnasium. [145] [146]
Gym Retro
Released in 2018, Gym Retro is a platform for support knowing (RL) research study on computer game [147] utilizing RL algorithms and study generalization. Prior RL research study focused mainly on enhancing agents to fix single jobs. Gym Retro offers the capability to generalize in between video games with comparable concepts however various looks.
RoboSumo
Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot agents initially do not have knowledge of how to even walk, however are provided the objectives of discovering to move and to push the opposing agent out of the ring. [148] Through this adversarial learning process, the agents learn how to adjust to changing conditions. When an agent is then eliminated from this virtual environment and placed in a new virtual environment with high winds, the agent braces to remain upright, suggesting it had actually found out how to balance in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competitors between representatives could develop an intelligence "arms race" that could increase an agent's capability to operate even outside the context of the competitors. [148]
OpenAI 5
OpenAI Five is a group of 5 OpenAI-curated bots used in the competitive five-on-five computer game Dota 2, that find out to play against human gamers at a high ability level completely through experimental algorithms. Before becoming a group of 5, the very first public demonstration took place at The International 2017, the annual best championship tournament for the game, where Dendi, an expert Ukrainian gamer, lost against a bot in a live one-on-one matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had learned by playing against itself for 2 weeks of actual time, and that the learning software was an action in the instructions of developing software that can manage intricate jobs like a surgeon. [152] [153] The system utilizes a kind of reinforcement learning, as the bots find out in time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as killing an enemy and taking map objectives. [154] [155] [156]
By June 2018, the ability of the bots broadened to play together as a full group of 5, and they had the ability to beat groups of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibition matches against expert players, but ended up losing both video games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the reigning world champions of the video game at the time, larsaluarna.se 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' final public appearance came later on that month, where they played in 42,729 overall video games in a four-day open online competition, winning 99.4% of those video games. [165]
OpenAI 5's systems in Dota 2's bot gamer reveals the difficulties of AI systems in multiplayer online battle arena (MOBA) video games and how OpenAI Five has actually demonstrated the usage of deep support knowing (DRL) agents to attain superhuman proficiency in Dota 2 matches. [166]
Dactyl
Developed in 2018, oeclub.org Dactyl uses maker finding out to train a Shadow Hand, a human-like robotic hand, to control physical objects. [167] It discovers totally in simulation utilizing the very same RL algorithms and training code as OpenAI Five. OpenAI took on the things orientation problem by utilizing domain randomization, a simulation technique which exposes the student to a range of experiences rather than trying to fit to reality. The set-up for Dactyl, aside from having motion tracking electronic cameras, likewise has RGB cameras to permit the robot to manipulate an arbitrary things by seeing it. In 2018, OpenAI showed that the system had the to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl could solve a Rubik's Cube. The robotic was able to fix the puzzle 60% of the time. Objects like the Rubik's Cube present complex physics that is harder to model. OpenAI did this by enhancing the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation approach of producing gradually harder environments. ADR differs from manual domain randomization by not needing a human to define randomization ranges. [169]
API
In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing new AI designs established by OpenAI" to let designers contact it for "any English language AI task". [170] [171]
Text generation
The business has actually promoted generative pretrained transformers (GPT). [172]
OpenAI's original GPT design ("GPT-1")
The original paper on generative pre-training of a transformer-based language design was composed by Alec Radford and his colleagues, and published in preprint on OpenAI's site on June 11, 2018. [173] It revealed how a generative design of language could obtain world knowledge and process long-range reliances by pre-training on a diverse corpus with long stretches of contiguous text.
GPT-2
Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language model and the follower to OpenAI's initial GPT model ("GPT-1"). GPT-2 was revealed in February 2019, with only limited demonstrative variations initially launched to the general public. The complete version of GPT-2 was not right away released due to concern about possible abuse, including applications for writing phony news. [174] Some experts revealed uncertainty that GPT-2 postured a considerable danger.
In response to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to detect "neural phony news". [175] Other scientists, such as Jeremy Howard, warned of "the innovation to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would muffle all other speech and be difficult to filter". [176] In November 2019, OpenAI launched the complete variation of the GPT-2 language model. [177] Several sites host interactive presentations of different instances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue unsupervised language models to be general-purpose learners, highlighted by GPT-2 attaining modern precision and perplexity on 7 of 8 zero-shot tasks (i.e. the design was not further trained on any task-specific input-output examples).
The corpus it was trained on, called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It prevents certain problems encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3
First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a without supervision transformer language model and the successor to GPT-2. [182] [183] [184] OpenAI mentioned that the full version of GPT-3 contained 175 billion specifications, [184] two orders of magnitude larger than the 1.5 billion [185] in the full variation of GPT-2 (although GPT-3 designs with as few as 125 million criteria were likewise trained). [186]
OpenAI mentioned that GPT-3 prospered at certain "meta-learning" jobs and could generalize the function of a single input-output pair. The GPT-3 release paper provided examples of translation and cross-linguistic transfer learning between English and Romanian, and in between English and German. [184]
GPT-3 considerably improved benchmark outcomes over GPT-2. OpenAI cautioned that such scaling-up of language designs could be approaching or experiencing the basic ability constraints of predictive language designs. [187] Pre-training GPT-3 needed a number of thousand petaflop/s-days [b] of calculate, compared to tens of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not instantly released to the general public for concerns of possible abuse, although OpenAI planned to permit gain access to through a paid cloud API after a two-month free private beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified solely to Microsoft. [190] [191]
Codex
Announced in mid-2021, Codex is a descendant of GPT-3 that has actually in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in personal beta. [194] According to OpenAI, the model can develop working code in over a dozen programs languages, most successfully in Python. [192]
Several concerns with glitches, design flaws and security vulnerabilities were pointed out. [195] [196]
GitHub Copilot has actually been implicated of emitting copyrighted code, without any author attribution or license. [197]
OpenAI revealed that they would cease assistance for Codex API on March 23, 2023. [198]
GPT-4
On March 14, 2023, engel-und-waisen.de OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They revealed that the updated innovation passed a simulated law school bar examination with a rating around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could also read, analyze or generate as much as 25,000 words of text, and write code in all significant shows languages. [200]
Observers reported that the model of ChatGPT using GPT-4 was an enhancement on the previous GPT-3.5-based iteration, with the caveat that GPT-4 retained a few of the issues with earlier revisions. [201] GPT-4 is likewise efficient in taking images as input on ChatGPT. [202] OpenAI has decreased to expose numerous technical details and stats about GPT-4, such as the accurate size of the model. [203]
GPT-4o
On May 13, 2024, OpenAI announced and launched GPT-4o, which can process and create text, images and it-viking.ch audio. [204] GPT-4o attained advanced lead to voice, multilingual, and vision standards, setting brand-new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, pipewiki.org 2024, OpenAI launched GPT-4o mini, a smaller version of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be particularly helpful for business, startups and developers looking for to automate services with AI representatives. [208]
o1
On September 12, 2024, OpenAI released the o1-preview and o1-mini designs, which have been designed to take more time to consider their responses, causing higher precision. These models are especially reliable in science, coding, and thinking tasks, and were made available to ChatGPT Plus and Staff member. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3
On December 20, 2024, OpenAI revealed o3, the follower of the o1 reasoning model. OpenAI likewise revealed o3-mini, a lighter and faster variation of OpenAI o3. Since December 21, 2024, this design is not available for public usage. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security researchers had the chance to obtain early access to these designs. [214] The model is called o3 instead of o2 to avoid confusion with telecoms companies O2. [215]
Deep research study
Deep research is an agent developed by OpenAI, unveiled on February 2, 2025. It leverages the capabilities of OpenAI's o3 model to carry out substantial web browsing, data analysis, and synthesis, delivering detailed reports within a timeframe of 5 to 30 minutes. [216] With searching and Python tools made it possible for, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) benchmark. [120]
Image category
CLIP
Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to evaluate the semantic resemblance in between text and images. It can especially be used for image category. [217]
Text-to-image
DALL-E
Revealed in 2021, DALL-E is a Transformer model that develops images from textual descriptions. [218] DALL-E uses a 12-billion-parameter variation of GPT-3 to translate natural language inputs (such as "a green leather purse shaped like a pentagon" or "an isometric view of a sad capybara") and generate matching images. It can create pictures of sensible things ("a stained-glass window with an image of a blue strawberry") in addition to objects that do not exist in truth ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.
DALL-E 2
In April 2022, OpenAI announced DALL-E 2, an updated version of the design with more practical outcomes. [219] In December 2022, OpenAI released on GitHub software for Point-E, a new basic system for transforming a text description into a 3-dimensional model. [220]
DALL-E 3
In September 2023, OpenAI announced DALL-E 3, a more powerful design better able to create images from intricate descriptions without manual prompt engineering and render intricate details like hands and text. [221] It was launched to the general public as a ChatGPT Plus feature in October. [222]
Text-to-video
Sora
Sora is a text-to-video design that can create videos based upon short detailed prompts [223] as well as extend existing videos forwards or in reverse in time. [224] It can generate videos with resolution as much as 1920x1080 or 1080x1920. The maximal length of generated videos is unknown.
Sora's development group called it after the Japanese word for "sky", to symbolize its "limitless creative potential". [223] Sora's innovation is an adjustment of the technology behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system using publicly-available videos as well as copyrighted videos licensed for that function, however did not expose the number or the precise sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the general public on February 15, 2024, specifying that it might generate videos up to one minute long. It also shared a technical report highlighting the techniques used to train the design, and the model's capabilities. [225] It acknowledged a few of its drawbacks, including struggles mimicing complicated physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "outstanding", but kept in mind that they need to have been cherry-picked and may not represent Sora's typical output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, notable entertainment-industry figures have actually shown significant interest in the technology's potential. In an interview, actor/filmmaker Tyler Perry revealed his astonishment at the technology's capability to create sensible video from text descriptions, citing its potential to revolutionize storytelling and material creation. He said that his excitement about Sora's possibilities was so strong that he had actually decided to stop briefly prepare for broadening his Atlanta-based motion picture studio. [227]
Speech-to-text
Whisper
Released in 2022, Whisper is a general-purpose speech acknowledgment model. [228] It is trained on a big dataset of diverse audio and is likewise a multi-task design that can perform multilingual speech acknowledgment along with speech translation and language identification. [229]
Music generation
MuseNet
Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can generate songs with 10 instruments in 15 styles. According to The Verge, a song produced by MuseNet tends to start fairly but then fall into mayhem the longer it plays. [230] [231] In pop culture, initial applications of this tool were utilized as early as 2020 for the internet mental thriller Ben Drowned to produce music for the titular character. [232] [233]
Jukebox
Released in 2020, Jukebox is an open-sourced algorithm to generate music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a bit of lyrics and outputs song samples. OpenAI specified the songs "reveal local musical coherence [and] follow standard chord patterns" but acknowledged that the songs do not have "familiar larger musical structures such as choruses that duplicate" which "there is a considerable gap" between Jukebox and human-generated music. The Verge mentioned "It's technologically impressive, even if the outcomes seem like mushy variations of songs that might feel familiar", while Business Insider mentioned "remarkably, a few of the resulting songs are appealing and sound legitimate". [234] [235] [236]
Interface
Debate Game
In 2018, OpenAI introduced the Debate Game, which teaches devices to debate toy issues in front of a human judge. The purpose is to research study whether such an approach may assist in auditing AI choices and in establishing explainable AI. [237] [238]
Microscope
Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and nerve cell of eight neural network designs which are often studied in interpretability. [240] Microscope was produced to examine the features that form inside these neural networks quickly. The designs included are AlexNet, VGG-19, setiathome.berkeley.edu different variations of Inception, and various versions of CLIP Resnet. [241]
ChatGPT
Launched in November 2022, ChatGPT is a synthetic intelligence tool developed on top of GPT-3 that offers a conversational user interface that allows users to ask concerns in natural language. The system then responds with a response within seconds.
這將刪除頁面 "The Verge Stated It's Technologically Impressive"
。請三思而後行。