این کار باعث حذف صفحه ی "The Verge Stated It's Technologically Impressive"
می شود. لطفا مطمئن باشید.
Announced in 2016, Gym is an open-source Python library created to help with the advancement of support learning algorithms. It aimed to standardize how environments are defined in AI research, making released research more easily reproducible [24] [144] while supplying users with an easy user interface for communicating with these environments. In 2022, brand-new advancements of Gym have actually been transferred to the library Gymnasium. [145] [146]
Gym Retro
Released in 2018, Gym Retro is a platform for reinforcement knowing (RL) research study on video games [147] using RL algorithms and study generalization. Prior RL research study focused mainly on enhancing representatives to solve single jobs. Gym Retro gives the capability to generalize between video games with similar principles however different appearances.
RoboSumo
Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic agents initially lack knowledge of how to even stroll, however are provided the goals of finding out to move and to push the opposing agent out of the ring. [148] Through this adversarial learning process, the agents learn how to adapt to changing conditions. When a representative is then gotten rid of from this virtual environment and put in a brand-new virtual environment with high winds, the agent braces to remain upright, recommending it had actually discovered how to balance in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competition between representatives might create an intelligence "arms race" that could increase a representative's ability to work even outside the context of the competitors. [148]
OpenAI 5
OpenAI Five is a group of five OpenAI-curated bots utilized in the competitive five-on-five video game Dota 2, that learn to play against human gamers at a high skill level completely through experimental algorithms. Before becoming a group of 5, the very first public demonstration took place at The International 2017, the annual best championship tournament for the video game, where Dendi, a professional Ukrainian gamer, lost against a bot in a live one-on-one matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had learned by playing against itself for two weeks of actual time, which the learning software was an action in the direction of creating software application that can manage intricate tasks like a surgeon. [152] [153] The system utilizes a form of reinforcement knowing, as the bots find out over time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as killing an enemy and wavedream.wiki taking map objectives. [154] [155] [156]
By June 2018, the ability of the bots expanded to play together as a complete group of 5, and they were able to defeat teams of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibit matches against expert players, however wound up losing both games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the reigning world champions of the game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' final public appearance came later on that month, where they played in 42,729 overall games in a four-day open online competitors, winning 99.4% of those games. [165]
OpenAI 5's systems in Dota 2's bot gamer shows the difficulties of AI systems in multiplayer online battle arena (MOBA) games and how OpenAI Five has shown using deep reinforcement learning (DRL) representatives to attain superhuman skills in Dota 2 matches. [166]
Dactyl
Developed in 2018, Dactyl uses maker learning to train a Shadow Hand, a human-like robotic hand, to control physical items. [167] It finds out totally in simulation using the very same RL algorithms and training code as OpenAI Five. OpenAI took on the item orientation problem by using domain randomization, a simulation method which exposes the learner to a variety of experiences instead of attempting to fit to reality. The set-up for Dactyl, aside from having motion tracking cameras, likewise has RGB video cameras to enable the robot to control an approximate things by seeing it. In 2018, OpenAI showed that the system had the ability to control a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl could solve a Rubik's Cube. The robot had the ability to fix the puzzle 60% of the time. Objects like the Rubik's Cube introduce complex physics that is harder to model. OpenAI did this by improving the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation technique of generating progressively more difficult environments. ADR varies from manual domain randomization by not needing a human to define randomization ranges. [169]
API
In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing brand-new AI designs established by OpenAI" to let designers contact it for "any English language AI task". [170] [171]
Text generation
The company has popularized generative pretrained transformers (GPT). [172]
OpenAI's original GPT model ("GPT-1")
The initial paper on generative pre-training of a transformer-based language model was composed by Alec Radford and surgiteams.com his associates, and published in preprint on OpenAI's site on June 11, 2018. [173] It showed how a generative design of language might obtain world knowledge and process long-range reliances by pre-training on a varied corpus with long stretches of contiguous text.
GPT-2
Generative Pre-trained Transformer 2 ("GPT-2") is a not being watched transformer language design and the follower to OpenAI's original GPT design ("GPT-1"). GPT-2 was announced in February 2019, with just minimal demonstrative variations initially launched to the general public. The full version of GPT-2 was not instantly released due to concern about prospective misuse, including applications for writing phony news. [174] Some experts expressed uncertainty that GPT-2 postured a significant hazard.
In action to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to identify "neural phony news". [175] Other scientists, such as Jeremy Howard, cautioned of "the innovation to completely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would hush all other speech and be impossible to filter". [176] In November 2019, OpenAI released the complete variation of the GPT-2 language design. [177] Several sites host interactive presentations of different instances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue unsupervised language models to be general-purpose students, illustrated by GPT-2 attaining state-of-the-art accuracy and perplexity on 7 of 8 zero-shot tasks (i.e. the model was not more trained on any task-specific input-output examples).
The corpus it was trained on, called WebText, contains a little 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It prevents certain problems encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both private characters and multiple-character tokens. [181]
GPT-3
First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is an unsupervised transformer language model and the successor to GPT-2. [182] [183] [184] OpenAI mentioned that the complete version of GPT-3 contained 175 billion specifications, [184] two orders of magnitude bigger than the 1.5 billion [185] in the full version of GPT-2 (although GPT-3 models with as few as 125 million criteria were also trained). [186]
OpenAI mentioned that GPT-3 was successful at certain "meta-learning" jobs and could generalize the purpose of a single input-output pair. The GPT-3 release paper offered examples of translation and cross-linguistic transfer knowing in between English and Romanian, and between English and German. [184]
GPT-3 considerably enhanced benchmark outcomes over GPT-2. OpenAI cautioned that such scaling-up of language designs could be approaching or experiencing the essential ability constraints of predictive language designs. [187] Pre-training GPT-3 needed several thousand petaflop/s-days [b] of compute, compared to 10s of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not right away released to the general public for concerns of possible abuse, although OpenAI prepared to allow gain access to through a paid cloud API after a two-month complimentary private beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed solely to Microsoft. [190] [191]
Codex
Announced in mid-2021, Codex is a descendant of GPT-3 that has additionally been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, it-viking.ch an API was launched in personal beta. [194] According to OpenAI, the model can create working code in over a lots shows languages, most effectively in Python. [192]
Several concerns with glitches, design flaws and security vulnerabilities were pointed out. [195] [196]
GitHub Copilot has been accused of discharging copyrighted code, with no author attribution or license. [197]
OpenAI revealed that they would discontinue support for Codex API on March 23, 2023. [198]
GPT-4
On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They announced that the updated technology passed a simulated law school bar examination with a score around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could also read, evaluate or generate approximately 25,000 words of text, and compose code in all major programs languages. [200]
Observers reported that the version of ChatGPT using GPT-4 was an enhancement on the previous GPT-3.5-based model, with the caution that GPT-4 retained some of the problems with earlier revisions. [201] GPT-4 is likewise capable of taking images as input on ChatGPT. [202] OpenAI has decreased to reveal numerous technical details and data about GPT-4, such as the accurate size of the model. [203]
GPT-4o
On May 13, 2024, OpenAI revealed and released GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained modern lead to voice, multilingual, and vision benchmarks, setting new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) criteria compared to 86.5% by GPT-4. [207]
On July 18, ratemywifey.com 2024, OpenAI released GPT-4o mini, a smaller sized version of GPT-4o changing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be particularly helpful for enterprises, start-ups and oeclub.org developers seeking to automate services with AI representatives. [208]
o1
On September 12, 2024, OpenAI launched the o1-preview and o1-mini models, which have been created to take more time to think of their reactions, resulting in higher accuracy. These designs are especially effective in science, coding, and reasoning tasks, and were made available to ChatGPT Plus and Employee. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3
On December 20, 2024, OpenAI unveiled o3, the follower of the o1 thinking design. OpenAI also revealed o3-mini, a lighter and faster version of OpenAI o3. Since December 21, 2024, this design is not available for public usage. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, security and security researchers had the opportunity to obtain early access to these designs. [214] The design is called o3 instead of o2 to prevent confusion with telecoms services company O2. [215]
Deep research
Deep research is an agent established by OpenAI, unveiled on February 2, 2025. It leverages the abilities of OpenAI's o3 design to perform substantial web browsing, information analysis, and synthesis, reports within a timeframe of 5 to 30 minutes. [216] With browsing and Python tools allowed, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) standard. [120]
Image category
CLIP
Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to analyze the semantic similarity in between text and images. It can significantly be utilized for image category. [217]
Text-to-image
DALL-E
Revealed in 2021, DALL-E is a Transformer design that develops images from textual descriptions. [218] DALL-E uses a 12-billion-parameter variation of GPT-3 to interpret natural language inputs (such as "a green leather purse formed like a pentagon" or "an isometric view of an unfortunate capybara") and generate corresponding images. It can create images of realistic things ("a stained-glass window with a picture of a blue strawberry") in addition to items that do not exist in reality ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.
DALL-E 2
In April 2022, OpenAI announced DALL-E 2, an updated variation of the model with more reasonable outcomes. [219] In December 2022, OpenAI released on GitHub software for Point-E, a new basic system for transforming a text description into a 3-dimensional design. [220]
DALL-E 3
In September 2023, OpenAI announced DALL-E 3, a more powerful design much better able to produce images from complex descriptions without manual timely engineering and render intricate details like hands and text. [221] It was released to the general public as a ChatGPT Plus function in October. [222]
Text-to-video
Sora
Sora is a text-to-video design that can produce videos based upon brief detailed triggers [223] as well as extend existing videos forwards or in reverse in time. [224] It can produce videos with resolution up to 1920x1080 or 1080x1920. The maximal length of produced videos is unknown.
Sora's development team called it after the Japanese word for "sky", to represent its "endless imaginative capacity". [223] Sora's technology is an adaptation of the technology behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system utilizing publicly-available videos in addition to copyrighted videos certified for that purpose, however did not reveal the number or the specific sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the general public on February 15, 2024, mentioning that it could produce videos approximately one minute long. It also shared a technical report highlighting the methods utilized to train the model, and the design's capabilities. [225] It acknowledged some of its shortcomings, consisting of battles imitating complex physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "outstanding", but noted that they must have been cherry-picked and might not represent Sora's common output. [225]
Despite uncertainty from some academic leaders following Sora's public demo, noteworthy entertainment-industry figures have revealed significant interest in the technology's potential. In an interview, actor/filmmaker Tyler Perry expressed his astonishment at the technology's capability to generate realistic video from text descriptions, citing its possible to revolutionize storytelling and content development. He said that his enjoyment about Sora's possibilities was so strong that he had actually chosen to pause strategies for wiki.rolandradio.net expanding his Atlanta-based film studio. [227]
Speech-to-text
Whisper
Released in 2022, Whisper is a general-purpose speech acknowledgment design. [228] It is trained on a big dataset of varied audio and is likewise a multi-task design that can carry out multilingual speech recognition in addition to speech translation and language identification. [229]
Music generation
MuseNet
Released in 2019, MuseNet is a deep neural net trained to forecast subsequent musical notes in MIDI music files. It can create songs with 10 instruments in 15 designs. According to The Verge, a song generated by MuseNet tends to begin fairly however then fall into chaos the longer it plays. [230] [231] In popular culture, initial applications of this tool were used as early as 2020 for the web mental thriller Ben Drowned to create music for the titular character. [232] [233]
Jukebox
Released in 2020, Jukebox is an open-sourced algorithm to produce music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a snippet of lyrics and outputs song samples. OpenAI specified the songs "reveal local musical coherence [and] follow traditional chord patterns" however acknowledged that the tunes do not have "familiar bigger musical structures such as choruses that repeat" which "there is a significant space" between Jukebox and human-generated music. The Verge specified "It's highly remarkable, even if the outcomes seem like mushy variations of tunes that may feel familiar", while Business Insider stated "surprisingly, some of the resulting songs are catchy and sound genuine". [234] [235] [236]
User user interfaces
Debate Game
In 2018, OpenAI introduced the Debate Game, which teaches makers to discuss toy issues in front of a human judge. The function is to research study whether such a technique may help in auditing AI choices and in developing explainable AI. [237] [238]
Microscope
Released in 2020, Microscope [239] is a collection of visualizations of every considerable layer and neuron of 8 neural network designs which are typically studied in interpretability. [240] Microscope was developed to evaluate the features that form inside these neural networks quickly. The models consisted of are AlexNet, VGG-19, different versions of Inception, and different variations of CLIP Resnet. [241]
ChatGPT
Launched in November 2022, ChatGPT is a synthetic intelligence tool constructed on top of GPT-3 that supplies a conversational user interface that allows users to ask concerns in natural language. The system then reacts with an answer within seconds.
این کار باعث حذف صفحه ی "The Verge Stated It's Technologically Impressive"
می شود. لطفا مطمئن باشید.